On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange Basis

نویسندگان

  • Robert M. Corless
  • R. M. Corless
چکیده

Abstract. Experimental observations of univariate rootfinding by generalized companion matrix pencils expressed in the Lagrange basis show that the method can sometimes be numerically stable. It has recently been proved that a new condition number, defined for points on a set containing the interpolation points, is never larger than the rootfinding condition number for the Bernstein polynomial (which is itself optimal in a certain sense); and computation shows that sometimes it can be much smaller. These results also hold for the matrix polynomial case, when we are not looking for polynomial roots but rather for eigenvalues where the matrix polynomial is singular. This current paper explores the influence of the geometry of the interpolation nodes on the conditioning of the rootfinding and eigenvalue problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block LU factors of generalized companion matrix pencils

We present formulas for computations involving companion matrix pencils as may arise in considering polynomial eigenvalue problems. In particular, we provide explicit companion matrix pencils for matrix polynomials expressed in a variety of polynomial bases including monomial, orthogonal, Newton, Lagrange, and Bernstein/Bézier bases. Additionally, we give a pair of explicit LU factors associate...

متن کامل

Generalized Companion Matrices in the Lagrange Basis

It is well known that solving polynomial equations, or finding the eigenvalues of matrix polynomials, can be done by transforming to a generalized eigenvalue problem (see for example [10]). In this paper we examine a new way to do this directly from the values of the polynomial or matrix polynomial at distinct evaluation points.

متن کامل

Bernstein Bases are Optimal , but , sometimes , Lagrange Bases are Better

Experimental observations of rootfinding by generalized companion matrix pencils expressed in the Lagrange basis show that the method can sometimes be numerically stable, and indeed sometimes be much more stable than rootfinding of polynomials expressed in even the Bernstein basis. This paper details some of those experiments and provides a theoretical justification for this. We prove that a ne...

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

Some Results on the Field of Values of Matrix Polynomials

In this paper, the notions of pseudofield of values and joint pseudofield of values of matrix polynomials are introduced and some of their algebraic and geometrical properties are studied.  Moreover, the relationship between the pseudofield of values of a matrix polynomial and the pseudofield of values of its companion linearization is stated, and then some properties of the augmented field of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005